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ABSTRACT 
 

This paper investigates using machine learning (ML) to predict the structural responses 
of buildings during earthquakes. It highlights the potential of data-driven methods to 
provide quick estimations. In the study, numerous building models are analyzed with 
non-linear time-history analysis using past earthquake histories with a variety of 
magnitudes. Input parameters and output responses are consolidated as training and 
testing datasets for development of ML prediction models. In addition to the classical 
ML algorithms, the feasibility of using ensemble artificial neural networks (ANN), 
transformer-based architectures, and convolutional neural network (CNN) algorithms is 
explored in this study.  
     Evaluations show that data-driven methods can effectively estimate seismic 
responses of buildings. Boosting methods, such as XGBoost and AdaBoost, perform 
well with reasonable computational efforts. The results show that vanilla ANN models 
can be improved by using ensemble techniques, transformers, and CNN algorithms. A 
transformer-based model is proposed based on feature embedding, input masking, and 
transformer modules. The predictive performance of the proposed model outperforms 
most of the ensemble algorithms in seismic response prediction. 
 
1. INTRODUCTION 
 
     Seismic vulnerability of buildings and structures is an important task in structural 
engineering to protect human life and identify the possibility of building collapse during 
earthquakes. It involves understanding how different structures response under future 
earthquakes and developing strategies to mitigate potential hazards. By evaluating 
seismic responses of buildings, they can design buildings that are more resilient and 
capable of withstanding earthquakes, thereby reducing the risk of catastrophic failures. 
Engineers use various analytical methods, such as non-linear static (pushover) analysis 
or non-linear time-history analysis (NLTHA) to predict the structural responses of 
buildings. Pushover analysis is a simplified method to rapidly estimate the capacities 
and failure mechanisms of buildings under earthquakes. According to this method, 
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earthquake actions are approximated by lateral forces with specified load patterns 
applied monotonically to buildings (Saleemuddin and Sangle, 2017). The performance 
of buildings can be measured based on different approaches, such as coefficient 
methods or spectrum methods. Some modified pushover methods, such as modal 
pushover analysis, are developed to improve the accuracy of the analysis. On the other 
hand, non-linear dynamic analysis is known as the most accurate method to assess 
seismic performance of buildings. This method involves solving the equations of motion 
for multiple degrees of freedom (MDOF) systems subjected to ground motions (Nazari 
and Saatcioglu, 2017). However, the computation efforts are much higher than 
pushover methods and therefore, it is difficult to apply in large-scale projects owing to 
the hardware limitations and time constraints.  
     Recently, data-driven approaches via machine learning methods have been 
widely adopted to handle complicated tasks particularly in the areas of computer vision 
and natural language processing (Liu, 2020). These successful applications mainly 
result from the development of efficient machine learning algorithms, enhancement of 
hardware and rich relevant training data. In civil engineering, data-driven methods are 
successfully applied in different disciplines, such as construction management, 
structural health monitoring, transportation, image recognition, architectural design, etc. 
(Pan and Zhang, 2021; Thai, 2022). Data-driven methods can be also adopted in 
seismic vulnerability assessment to provide rapid estimation on seismic risk of buildings 
(Wen et al., 2022; Mahmoudi et al., 2023; Bhatta et al., 2024; Demir et al., 2024).  
     In literature, prediction models were developed for classification (e.g., predicting 
damage level) and regression tasks (e.g., predicting inter-story drift) (Géron, 2019). 
Different machine learning algorithms were adopted, such as artificial neural networks, 
support vector machines, decision trees, and ensemble methods. Wen et al. (2022) 
developed regression models to predict inter-story drift ratio and peak floor acceleration 
using StruNet, which is based on neural network algorithm. Earthquake records and 
selected structure parameters, such as number of stories, story height, column spacing 
and transverse span, were used as input features. Mahmoudia et al. (2023) 
investigated several algorithms for damage classification and the results showed that 
K-Nearest Neighbor algorithm was the most accurate algorithm. The hyperparameters 
of models were adjusted using Bayesian optimization algorithm. Some damage 
features, such as Arias intensity, cumulative absolute velocity, spectral acceleration, 
energy ratio and drift, were considered. Bhatta et al. (2024) selected several algorithms 
to develop models for damage assessment of RC buildings. It was found that random 
forests were the most effective algorithm. The prediction model could be applied on a 
regional scale to predict the damaged classes of RC buildings, based on simple 
parameters such as number of stories, story height, height of building, fundamental 
period, building age and plan configuration, peak ground acceleration and velocity. 
Demir et al. (2024) selected a total of 21 ground motion intensity measures to develop 
prediction models to predict maximum drift ratio of buildings. Regular and irregular RC 
frames were considered. The study found that both random forest and XGBoost 
algorithms could achieve comparable efficiency and accuracy. In short, selection of 
appropriate algorithms and suitable input features are key factors for developing 
prediction models.  
     Among all machine learning algorithms, artificial neural networks (ANNs) or deep 
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learning approaches are known as very effective methods to handle complex tasks in 
the real world, such as image and text generation, since ANNs and deep learning are 
good in processing data with spatial or semantic relationships. On the other hand, the 
ability of ANNs to handle tabular data is not widely recognized. Tabular data is a 
common data structure where information is organized in a table format. Rows 
represent different samples, while columns represent various features with discrete (i.e., 
categorical) or continuous (i.e., numerical) values. Previous studies revealed that 
ensemble methods, such as tree-based boosting methods, performed better in handling 
tabular data compared with vanilla ANNs models (Shwartz-Ziv and Armon, 2021; Luk, 
2023; Borisov et al., 2024). Recently, some studies were conducted using transformer-
based models to improve the performance of ANN models on tabular data. Arik and 
Pfister (2019) introduced TabNet, which utilizes sequential attention mechanisms for 
instance-wise feature selection to effectively process tabular data. Huang et al. (2020) 
developed TabTransformer based on self-attention algorithms to process tabular data. 
In the model, categorical features were embedded and passed through transformer 
modules. Gorishniy et al. (2021) proposed the use of ResNet-like architecture and 
feature tokenizer transformer (FT-Transformer) architecture on tabular data. The latter 
method transformed all features before sending them to the transformer modules. 
Gorishniy et al. (2022) explored two techniques, including piecewise linear encoding 
(binning) and periodic activation functions, for embedding numerical features to 
enhance the capabilities of deep learning models. Such techniques could reduce the 
gaps between deep learning methods and boosting methods. Somepalli et al. (2022) 
developed SAINT model, where row and column attentions and embedding of all input 
features with MLP were involved. The study showed that ANN models could perform 
competitively with tree-based boosting methods. Chen et al. (2024) proposed 
ExcelFormer by introducing semi-permeable attention module and gated linear units in 
transformer architecture and data augmentation methods to enrich datasets. The 
results showed that the proposed techniques could greatly improve the predictive 
performance of ANN models. Instead of transformer-based approaches, other 
techniques, such as the use of tabular-to-image transformation techniques (Briner et al., 
2023) or combining graph-structure data format and graph neural network (Alkhatib et 
al., 2024), are also possible methods to improve ANNs on handling tabular data. More 
studies are therefore needed to investigate suitable data structure, data pre-processing 
techniques and machine learning algorithms in these applications. 
     This study aims to investigate suitable machine learning algorithms to develop 
prediction models for buildings under earthquakes. A variety of machine learning 
algorithms are adopted to study their efficiency, suitability, and accuracy in prediction or 
regression problems. Techniques for enhancing the performance of ANNs, such as 
ensemble methods, embedding techniques, network architectures, and the influences 
of the corresponding hyperparameters, are explored in detail.  
 
2. METHODOLOGY / DATA-DRIVEN METHODS 
 
     The methodology of development of prediction models involves several key steps, 
including dataset generation via non-linear time-history analysis, selection of effective 
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machine learning algorithms, and training and evaluation of the selected machine 
learning models. Details of each step are presented in the following sections.  
 
     2.1 Non-linear time-history analysis 
      
     In this study, a total of 40 building models were modelled and designed based on 
code of practice for structural use of concrete in Hong Kong (HKCP2013). Different 
design variables, including height and width of buildings, dimension of structural 
members, material property and reinforcement ratio, were considered. Models were 
developed with heights ranging from 14 m to 70 m and widths ranging from 18 m to 30 
m. Concrete with elastic modules of 23.7 kN/m2, 25.1 kN/m2, 27.7 kN/m2 and 30 kN/m2, 
respectively, were used. The elastic modules and yield strength of reinforcement were 
200 kN/m2 and 500 kN/m2, respectively. The steel ratio of beams ranges from 0.71% to 
2.38%, while the steel ratio of columns ranges from 1.20% to 4.36%. A sample 4-storey 
building is shown in Fig. 1. Variety of beam and column sizes were considered. 

 
Fig. 1 Sample of 4-story building model 

 
     Incremental dynamic analysis (IDA) was adopted to assess the seismic 
performance of buildings (Vamvatsikos and Cornell, 2002). All the analyses were 
carried out using ETABS, which is a widely used finite element software for tall 
buildings analysis and design in practice. IDA involved conducting extensive non-linear 
time-history analyses (NLTHA) with scaled intensity measures, where peak ground 
acceleration (PGA) was selected as the intensity measure. In this study, 16 selected 
past earthquakes were selected mainly from ATC-63 ground motion set (FEMA P-695). 
The values of PGA were scaled from 0.1g to 1.0g to simulate earthquakes with different 
magnitudes. In the finite element models, material non-linearity was modelled using 
plastic hinges at member’s ends. Geometric non-linearity was considered via activating 
the second-order order P-delta effect. The model was first loaded under gravity load 
with combination of 1.0Gk and 0.3Qk, where Gk and Qk are the dead load and imposed 
load, respectively. After that, ground accelerations were applied to the model to 
simulate the earthquake attack. Rayleigh damping with damping ratio of 5% was 
adopted in analyses. The structural responses, such as top drifts and inter-story drift 
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ratios, were determined by finite element analysis. The input parameters and outputs 
were consolidated in tabular format for training ML models in the next step. 
 
     2.2 Classical and ensemble machine learning algorithms 
 
     Selection of effective and efficient machine learning (ML) algorithms is a crucial 
task for the development of prediction models. Prediction models are normally 
developed using supervised learning, in which the ML models are trained using labeled 
datasets. This study aims to develop regression models to predict seismic responses of 
buildings. Basic ML algorithms, ensemble methods and artificial neural network-based 
models were considered. Input features 𝐗 = (𝑥1, 𝑥2, … ) and target 𝑦 obtained from 
previous IDA were consolidated for training ML models based on a variety of algorithms. 
All the ML models were developed in Python version 3.11. Several python libraries, 
such as scikit-learn (Pedregosa et al., 2011), xgboost, lightgbm and tensorflow, were 
utilized to develop prediction models. The hyperparameters of ML models were 
evaluated using grid search method. The suitability and performance of different ML 
algorithms were investigated and compared. 
     Several basic ML algorithms, including linear regression, stochastic gradient 
descent (SGD), decision tree (DT), k-nearest neighbor (KNN) and support vector 
regression (SVR) were adopted as baseline models for comparison. Details about the 
description of these baseline models can be found in the previous study (Luk, 2025). 
The hyperparameters of basic ML models are presented in Table 1.  
 
Table 1. Hyperparameters for the selected basic ML models 

Model Hyperparameters 

Linear regression - 

SGD loss=squared_error, penalty=’l2’, alpha=0.0001, tol=0.0001 

DT criterion=squared_error, max_depth=14 

KNN n_neighbors=2, weights=distance 

SVR C=20, gamma=scale, kernel=rbf 

 
     Ensemble methods aim to improve the performance and generality of prediction 
models by combining multiple ML algorithms together sequentially or in parallel (Mienye 
and Sun, 2022). Depending on the combining approaches, ensemble methods can be 
classified into voting methods, stacking methods, bagging methods and boosting 
methods (Luk, 2023). In this study, several ensemble methods, including random forest 
(Ho, 1995), gradient boosted decision tree (Friedman, 2001), adaptive boosting 
(Freund and Schapire, 1995), XGBoost (Chen and Guestrin, 2016), and LightGBM (Ke 
et al., 2017) were adopted. Table 2 presents the hyperparameters of selected 
ensemble models. Below are some descriptions of boosting algorithms. 
 
Gradient boosted decision tree (GBDT) is known as an efficient and accurate algorithm 
based on gradient boosting methods (Friedman, 2001). In this method, many weak 
learners are combined sequentially to minimize errors from previous weak learners. In 
GBDT, DT is selected as the weak learners. The concept of gradient descent is used to 
minimize the selected loss function (residual) for the next weak learner. By combining 
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all the predictions together, the accuracy of the final prediction can be greatly enhanced. 
Hyperparameters, such as learning rate, number of estimators, and DT-related 
parameters, need to be adjusted.  
 
Table 2. Hyperparameters for the selected ensemble models 

Model Hyperparameters 

Random forest (RF) n_estimators=350, criterion=squared_error 

GBDT loss=squared_error, learning_rate=0.2, n_estimators=500, 
criterion=friedman_mse 

AdaBoost estimator=decision tree, n_estimators=100, learning_rate=1.0, 
loss=linear 

XGBoost booster=gbtree, eta=0.2, lambda=0.01, alpha=0.01,  
n_estimators=200, max_depth=30, subsample=0.8,  
colsample_bytree=0.8 

LightGBM boosting_type=gbdt, num_iterations=100,  
lambda_l1=0.005, lambda_l2=0.0001, num_leaves=50, 
feature_fraction=0.80, bagging_fraction=0.80 

Stacking basic_learner=[GBDT, AdaBoost, XGBoost] 
meta_learner=linear 

 
eXtremely gradient boosting (XGBoost) is an accurate and efficient algorithm 
developed based on the concept of GBDT (Chen and Guestrin, 2016). The basic 
framework of XGBoost is similar to GBDT, as discussed in the previous paragraph. In 
addition to the classical gradient boosting algorithms, XGBoost introduces second-
order derivatives, bagging algorithm for sub-sampling and regularization to improve 
performance and to reduce overfitting, which enhance the generality of the prediction 
models in practice. 
 
Light gradient boosting machine (LightGBM) is a fast and high-performance gradient 
boosting model based on GBDT (Ke et al., 2017). Unlike XGBoost that uses level-wise 
tree growth, LightGBM uses leaf-wise tree growth and histogram-based algorithms to 
reduce memory usage and computation effort, which makes LightGBM generally faster 
than XGBoost. 
 
Adaptive boost (Adaboost) is based on boost algorithms but slightly different from 
gradient boosting algorithms. Instead of using gradient descent, Adaboost assigns 
weights to all samples, each with the same weight initially. After training, higher weights 
are assigned to the misclassified samples so that the errors from the previous weak 
learner can be minimized in the next weak learner (Freund and Schapire, 1995). The 
predictions are then combined to obtain the final outputs.  
 
     2.3 Artificial neural network (ANN) 
 
     ANNs and deep learning are widely used nowadays in different complex tasks, 
particularly in generative AI, image recognition and large language models. Typical 
examples of deep learning algorithms include convolutional neural networks (CNNs) for 
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image processing and transformer models for natural language processing (NLP). The 
potential of ANNs for tabular data is often overlooked, though deep learning may help 
to enhance their performance on such problems. In this study, four types of ANN 
models, including vanilla ANNs, ensemble ANNs, transformer-based models, and CNN-
based models were explored and compared with basic and ensemble methods. 
Descriptions of these models are presented in the next section. 
 
Multi-layer perceptron (MLP), or feedforward neural network, is a simple form of ANNs 
in which the model is formed by fully connecting nodes together. At a particular node 
within a hidden layer, the information is manipulated via trainable weights (𝑤𝑖) and bias 
(𝑏𝑖) and then passing to non-linear activation functions, such as rectified linear unit (relu) 
and Gaussian error linear unit (gelu). The size of the input layer depends on the 
number of input features, while the size of the output layer depends on the target (or 
label). For regression problems, the size of output layer is one with no activation 
function. Fig. 2 shows a sample network architecture with three input features and two 
hidden layers used for regression purposes. The weights and bias between nodes are 
updated through backpropagation, which is based on the differences between 
predictions and given data. The key hyperparameters in MLP include the number of 
hidden layers and the number of units for each hidden layer. One to three hidden layers 
with units of 16 to 128 per layer were considered in this study. 
 

 
 

Fig. 2 Multi-layer perceptron with three numerical input features as example 
 
Ensemble artificial neural networks are an advanced technique by combining multiple 
neural network models together based on ensemble methods, such as stacking and 
boosting methods (Luk, 2025). The advantages are to enhance the overall predictive 
performance and to reduce bias.  
     In this study, stacking and gradient boosting algorithms were adopted to enhance 
the ANNs performance to process tabular data. Ensemble ANN models based on 
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stacking method (StackANNs) were developed by using three vanilla MLP models as 
base learners. Each MLP model was created using one to two hidden layers, each with 
16, 32 or 64 units. The predictions from each base learner were concatenated and sent 
to a meta-learner to generate the final predictions. Linear model was adopted as the 
meta-learner. 
     For the ensemble ANNs models based on gradient boosting algorithm (GBANNs), 
MLP models were arranged sequentially. Each MLP model was trained using the inputs 
𝐗 and residuals 𝑟 = 𝑦 − 𝑦̂, where 𝑦 is the target and 𝑦̂ is the prediction from previous 
weak learners. The final predictions were computed by summing up all the predictions 
together with a selected learning rate. A total of 20 weak learners were adopted for 
GBANN models in this study. 
 
Transformer-based models are based on the attention model (Vaswani et al., 2017), 
which is a significant breakthrough in NLP and LLM. In literature, attention mechanisms 
utilize scaled dot-products between query, key and value matrices to learn the 
relationships between words or tokens in a paragraph to get better results in generative 
models. Mathematically, it can be computed as 

Attention(𝑸,𝑲,𝑽) = softmax (
𝑸𝑲𝑇

√𝑑𝑘
)𝑽 (1) 

where 𝑸, 𝑲, 𝑽 are the query, key and value matrices, respectively, which are formed 
using trainable weights matrices and input vectors, and 𝑑𝑘 is related to the dimension 
of key vectors. In addition, attention mechanisms support parallelization to enhance 
training efficiency. 
     To improve the ANN ability to process tabular data, transformer architecture was 
adopted in this study. TabTransformer (Haung et al., 2020), a transformer-based model 
for tabular data, was based on the original attention model (Vaswani et al., 2017) and 
only categorical features were embedded. FT-Transformer (Gorishniy et al., 2023) 
embeded all numerical and categorical features using linear operations. In this study, 
both categorical and numerical features were embedded separately with different 
embedding methods. The modified model is called Tabular Embedding Transformer 
(TET). Fig. 3 illustrates the architecture of the proposed TET model.  
     Similar to TabTransformer, categorical features were embedded, with pre-defined 
embedding dimensions. Moreover, numerical features were embedded into a vector 
space using selected embedding methods. The proposed model supported several 
embedding methods, including periodic activation functions, linear operation and 
binning embedding. For example, the embedded numerical feature 𝐸(𝑥) based on 
periodic activation functions (Tancik, et al., 2020; Gorishniy et al., 2022) were defined 
as the following operation, 
 

𝐸(𝑥) = concat[sin(𝑣) , cos⁡(𝑣)] (2) 

 
where 𝑣 = [2𝜋𝑐1𝑥, 2𝜋𝑐2𝑥, … ]  and 𝑐𝑖  are trainable parameters. This embedding 
method was to transform numerical features using harmonic functions with suitable 
frequencies that were determined via training. The size of the embedded features 
depended on the pre-defined embedding dimension.  
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Fig. 3 Illustration of Tabular Embedding Transformer (TET) architecture 

 
     In the revised model, a mask layer, which is a layer with multiplication operation 
between each embedded feature and learnable parameter, was introduced to take 
account of the importance of different input features. The embedded features were then 
passed to the transformer modules, which were composed of multi-head attention 
layers, normalization layers, and feedforward layers. Different from classical 
transformer modules, three feedforward layers with different networks’ architectures 
(e.g. number of units and hidden layers) were connected in parallel in this study, 
following the logic of ensemble method to reduce bias. After that, the results from 
transformer modules were concatenated and passed to the multi-layer perceptron layer 
to generate the final outputs. The hyperparameters for the TET models are presented 
in Table 3. Studying the effects of embedding and transformer to ANN models was an 
important scope in this study. Fig. 4 shows the network for model TET-P16T1M32-1. 
 
 
 

 



The 2025 World Congress on 
Advances in Structural Engineering and Mechanics (ASEM25)
BEXCO, Busan, Korea, August 11-14, 2025

  

Table 3. Network architectures of the TET models 

Model Networks’ Architecture 

Embedding 
dimension 

Numbers of 
transformer 

MLP arch. 
(units per layer) 

TET-P16T1M32-1* 16 1 32 

TET-P16T1M32-2 16 1 32,32 

TET-P16T2M32-1 16 2 32 

TET-P16T3M32-1 16 3 32 

TET-P32T1M32-1 32 1 32 

TET-P32T2M32-1 32 2 32 

TET-P32T3M32-1 32 3 32 
*TET-PxTyMp-q, where 
Px: P = Periodic embedding; x = embedding dimension 
Ty: T = Transformer; y = number of transformer 
Mp-q: M = MLP; p = units per layer, q = number of hidden layers 

 

 
 

Fig 4. Sample TET model: TET-P16T1M32-1 
 
CNN-based models are the other approaches to enhance the performance of vanilla 
ANN models to handle tabular data (Sharma et al., 2019; Zhu et al., 2021; Sharma and 
Kumar, 2022). This method first transforms tabular data into 2-dimensional images 
based on different tabular-to-image algorithms, such as data wrangling methods, 
dimensionality reduction-based methods, feature permutation-based methods and 
embedding methods (Alenizy and Berri, 2025). The images are then sent to CNN 
models for classification or regression purposes. 
     In this study, the CNN-based model first transformed tabular data into image 
datasets using novel algorithm for convolving tabular data (NCTD) method (Alenizy and 
Berri, 2025). This method transformed one sample (i.e., one row in tabular data) into a 
2D image by data duplication and rotation, as shown in Fig. 5. Hence, tabular data with 
𝑁 samples gave 𝑁 (𝑑x𝑑) images, and each image had unique spatial structure. The 
images were then expanded to 2𝑑x2𝑑 by stacking itself vertically and horizontally to 
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enrich the spatial structure. Next, the images were sent to 2D-CNN kernels and 
maximum pooling layers to identify important features. In this study, two 3x3 kernels 
and 2x2 pooling layers were adopted in the CNN architecture. The fully connected layer 
involved one hidden layer only. Table 4 summarizes the model hyperparameters. 
 

 
Fig 5. Tabular to image transformation (NCTD method) 

 
Table 4. Networks’ architecture of the CNN-based models 

Model CNN Layers FC Layers 
2D-CNN1-M16 Conv2D[filters=32, kernel_size=(3,3), activation=’relu’] 

MaxPooling2D[pool_size=2] 
Conv2D[filters=16, kernel_size=(3,3), activation=’relu’] 
MaxPooling2D[pool_size=2] 

Dense[units=16, activation=’relu’] 
Dense[units=1] 

2D-CNN2-M16 Conv2D[filters=64, kernel_size=(3,3), activation=’relu’] 
MaxPooling2D[pool_size=2] 
Conv2D[filters=32, kernel_size=(3,3), activation=’relu’] 
MaxPooling2D[pool_size=2] 

Dense[units=16, activation=’relu’] 
Dense[units=1] 

2D-CNN1-M32 Conv2D[filters=32, kernel_size=(3,3), activation=’relu’] 
MaxPooling2D[pool_size=2] 
Conv2D[filters=16, kernel_size=(3,3), activation=’relu’] 
MaxPooling2D[pool_size=2] 

Dense[units=32, activation=’relu’] 
Dense[units=1] 

2D-CNN2-M32 Conv2D[filters=64, kernel_size=(3,3), activation=’relu’] 
MaxPooling2D[pool_size=2] 
Conv2D[filters=32, kernel_size=(3,3), activation=’relu’] 
MaxPooling2D[pool_size=2] 

Dense[units=32, activation=’relu’] 
Dense[units=1] 

 
 
 
 

 

 a b c d e 

e a b c d 

d e a b c 

c d e a b 

b c d e a 
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     2.4 Validation of the proposed models 
 
     Large-scale datasets available in sklearn, Kaggle or OpenML were used to verify 
the performance of the modified models before developing the prediction models for 
estimating the seismic responses of buildings. Descriptions of the datasets are 
summarized in Table 5. Three datasets were for classification, while the remaining 
three were for regression. Before training the model, the numerical data was first 
normalized using max-min normalization. The categorical data was transformed into 
numerical numbers using ordinary encoding (i.e. discrete values 0, 1, 2, …, k). The 
performance was evaluated using k-fold validation procedures with k = 5. 
 
Table 5. Datasets for validation 

Index Name of Dataset No. of 
Sample 

No. of 
num 

No. of 
cat 

Task Batch 
size 

1 Titanic1 890 5 2 Classification 16 

2 Adult-census2 30162 6 8 Classification 128 

3 Otto Group Products3 61878 93 0 Classification 256 

4 House price4 1460 36 43 Regression 32 

5 California housing5 20640 8 0 Regression 128 

6 Ames Housing6 2929 37 43 Regression 32 
1 https://www.kaggle.com/datasets/pranjalyadav92905/titanic-eda-data 
2 https://www.openml.org/search?type=data&status=active&id=1590 
3 https://www.kaggle.com/competitions/otto-group-product-classification-challenge/data 
4 https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data?select=train.csv 
5 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_california_housing.html#sklearn.datasets.fetch_california_housing 
6 https://www.kaggle.com/datasets/prevek18/ames-housing-dataset 

 
     The performance of the proposed models (TET and 2D-CNN) and reference 
models (XGBoost, vanilla MLP and TabTransformer) is summarized in Table 6. 
Accuracy was selected as an evaluation metric for classification problems, while root 
mean square error (RMSE) was taken as metrics for regression problems. The results 
showed that the performance of the proposed TET models for both classification and 
regression problems was comparable or sometime better than XGBoost, showing good 
predictive ability. Moreover, the CNN-based models normally performed well for most of 
the datasets. Hence, they were used to develop prediction models to estimate seismic 
responses of buildings. 
 
Table 6. Validation results for classification and regression (best results are underlined) 

1.Classification (Metric: Accuracy) 

Model Name of Dataset 

Titanic Adult-census Otto Group Products 

XGBoost 0.819 0.866 0.813 

Vanilla MLP 0.788 0.834 0.792 

TabTransformer 0.787 0.831 0.751 

TET 0.845 0.870 0.831 

2D-CNN 0.820 0.851 0.708 
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2.Regression (Metric: RMSE) 

Model Name of Dataset 

House price California housing Ames Housing 

XGBoost 31418 0.469 24741 

Vanilla MLP 39109 0.733 50243 

TabTransformer 39634 0.742 34310 

TET 29487 0.632 22361 

2D-CNN 37375 0.625 36997 

 
     2.5 Input features and output label for prediction models 
 
     To develop ML models for predicting seismic responses of buildings and 
structures, representative datasets (𝑿,𝑦) should be available. Numerous input features 
were considered in the former studies (Luk, 2023; Luk, 2025). Among all input features, 
five earthquake parameters and five structural parameters were finally selected in this 
study, including peak ground acceleration (PGA), peak ground velocity, (PGV), peak 
ground displacement (PGD), ratio between PGV to PGA (V/A), spectral acceleration at 
fundamental period Sa(T1), height of building (H), building width (W), maximum axial 
load ratio (vd), moment of inertia of column (Ic) and fundamental period (T1) for training 
and testing of ML models. For the output prediction, maximum inter-story drift ratio 
(MIDR), which is a widely used indicator in literature and design guidelines, was 
selected. The input features were normalized using max-min normalization. 
     In this study, k-fold validation procedure with k = 5 was adopted to assess the 
predictive performance of each ML model. This approach first divided the entire dataset 
into k (= 5) data subsets. 4 subsets were used for training and 1 subset was used for 
testing. At the end of the procedure, each subset of data was used for both training and 
testing to obtain unbiased model comparisons. After that, the average values of each 
metric were computed and reported.  
      
3. RESULTS AND DISCUSSION 
      
     Four evaluation metrics, including mean square errors (MSE), mean absolute 
errors (MAE), root mean square errors (RMSE) and R2 score, were adopted to 
evaluate the performance of selected ML models. The following sections present the 
performance of basic ML models, ensemble models, vanilla ANN models, ensemble 
ANN models, transformer-based models, and CNN-based models, separately. 
 
     3.1 Performance of basic and ensemble algorithms 
 
     The performance of basic and ensemble models under consideration is 
summarized in Table 7. The results reveal that ensemble methods normally outperform 
the basic methods. Owing to the complex relationships between input and output 
variables, the performance of linear regression and stochastic gradient descent 
methods is unsatisfactory. The values of all evaluation metrics are generally worse than 
the other methods. The other basic methods (SVR, DT and KNN) can achieve 
reasonable performance, particularly SVR with MSE of 0.353, in which the performance 
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is comparable to some ensemble models. The previous study (Luk, 2025) also found 
that support vector machines could achieve high accuracy for classification problems. 
     Ensemble methods generally have good performance in all metrics, as shown in 
Table 7. Boosting methods are known as very efficient and effective methods in 
literature. Among all boosting methods, AdaBoost, where DT is selected as the basic 
learner, performs the best with MSE of 0.259, followed by XGBoost with MSE of 0.293. 
Both models can achieve small errors and high R2 scores. The performance of GBDT 
and LightGBM is lower than XGBoost. On the other hand, the performance of RF, 
which is based on bagging method, is comparable to LightGBM.  
     Boosting methods can be improved by using the stacking method, which 
introduces a meta-learner to improve the predictions from base learners. In this study, 
XGBoost, AdaBoost and GBDT are selected as the base learners, while linear model is 
adopted as the meta-learner. The results show that higher R2 values and lower errors 
are observed compared with the other ensemble models. The results also indicate the 
effectiveness of boosting methods in handling tabular data. 
      
Table 7. Results of basic and ensemble models (best results are underlined) 

Model MSE MAE RMSE R2 

Basic models 

Linear regression 1.072 0.579 1.033 0.686 

Stochastic gradient descent 1.087 0.583 1.041 0.682 

SVR 0.353 0.252 0.588 0.897 

DT 0.637 0.371 0.797 0.813 

KNN 0.429 0.340 0.654 0.874 

Ensemble models 

Random forest (RF) 0.336 0.267 0.578 0.902 

XGBoost 0.293 0.250 0.530 0.914 

LightGBM 0.336 0.305 0.577 0.902 

AdaBoost (DT) 0.259 0.243 0.508 0.924 

GBDT 0.301 0.273 0.548 0.912 

Stacking 0.258 0.239 0.507 0.924 

 
     3.2 Performance of vanilla MLP models 
 
     Table 8 shows that the overall performance of vanilla MLP models is lower than 
some basic models (e.g., SVR and DT) and ensemble models (XGBoost and RF), but 
better than linear regression in this problem. In terms of computational efforts for 
training and testing, MLP models normally take longer time compared with basic and 
ensemble models. The performance of vanilla MLP models depends on the model’s 
architecture. The best vanilla MLP model is MLP-64,64 with two hidden layers and 64 
units per layer, and the corresponding MSE is 0.562. The results also indicate that 
increasing numbers of hidden layers and units per layer are normally helpful to improve 
model performance. For MLP models with a single hidden layer, the MSE decreases 
from 0.770 (MLP-16) to 0.655 (MLP-128) when the units per layer increase from 16 to 
128. This is because more units are helpful in capturing the non-linear relationship 
between input features and targets. Similar trends are observed when the numbers of 
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hidden layers increase, except model MLP-16,16. However, the overall performance of 
all vanilla MLP models is still lower than boosting methods.  
 
Table 8. Results of vanilla MLP models (best results are underlined) 

Model MSE MAE RMSE R2 

MLP-16 0.770 0.540 0.874 0.775 

MLP-16,16 0.856 0.576 0.925 0.749 

MLP-16,16,16* 0.720 0.551 0.846 0.789 

MLP-32 0.762 0.533 0.870 0.777 

MLP-32,32 0.756 0.530 0.867 0.779 

MLP-64 0.689 0.526 0.828 0.798 

MLP-64,64 0.562 0.474 0.748 0.835 

MLP-128 0.684 0.562 0.825 0.800 

MLP-128,128 0.655 0.510 0.806 0.807 
*MLP-16,16,16 represents vanilla MLP model with three hidden layers and 16 units per layer 

 
     3.3 Performance of ensemble ANN models 
 
     Table 9 presents the performance of ensemble ANN models. For StackingANN 
models, their performance is better than vanilla MLP models presented in the previous 
section. The R2 score of MLP-16 is 0.775, while the value increases to 0.830 for 
StackANN-3(16)-L, which is developed by stacking three vanilla MLP models with 16 
units together. Similar trends are found for the other models. In addition, the best model 
is StackANN-3(64,64)-L, in which the performance is comparable with some ensemble 
models (RF and LightGBM), with a R2 score of 0.906.  
     The performance of GBANN models has also improved compared with vanilla 
MLP models. The R2 score of MLP-32 is 0.777, while the value increases to 0.823 for 
GBANN-N20-(32), which is formed by connecting 20 vanilla MLP models sequentially. 
However, GBANN models take much longer training since they involve training large 
numbers of MLP models. In addition, GBANN models are under-performed compared 
with ensemble models. In short, combining ensemble techniques with ANNs can 
enhance performance of neural network models, but the performance is normally poor 
than classical ensemble methods (e.g., XGBoost and AdaBoost) for handling tabular 
data. 
 
Table 9. Results of ensemble ANN models (best results are underlined) 

Model MSE MAE RMSE R2 

Stacking methods 

StackANN-3(16)-L 0.580 0.377 0.758 0.830 

StackANN-3(32)-L* 0.557 0.370 0.743 0.837 

StackANN-3(64)-L 0.477 0.352 0.688 0.860 

StackANN-3(16,16)-L 0.532 0.371 0.726 0.845 

StackANN-3(32,32)-L 0.410 0.355 0.639 0.880 

StackANN-3(64,64)-L 0.321 0.303 0.563 0.906 

Gradient boosting 

GBANN-N20-(16) 0.683 0.430 0.824 0.800 
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GBANN-N20-(32)# 0.605 0.410 0.777 0.823 

GBANN-N20-(64) 0.547 0.391 0.738 0.840 

GBANN-N20-(16,16) 0.660 0.472 0.811 0.807 

GBANN-N20-(32,32) 0.564 0.443 0.749 0.835 

GBANN-N20-(64,64) 0.441 0.390 0.662 0.871 
* StackANN-3(32)-L represents stacking ANN model with 3 MLP-32 as the base learners and L represents linear 
model as meta learner  
#

 GBANN-N20-(32) represents GBANN model with 20 numbers of estimators and MLP-32 as weak learner 

 
     3.4 Performance of transformer-based models 
 
     The performance of the proposed transformer-based models with selected hyper-
parameters, such as embedding dimensions, number of transformer blocks and 
settings of MLP layer, is summarized in Table 10. The results show that all the TET 
models outperform the ensemble models, such as XGBoost and RF. The best model is 
TET-P16T2M32-1 with embedding dimensions of 16 and 2 transformer modules. The 
R2 value is 0.974, which is higher than all the ensemble models. The results also 
reveal that an increase in embedding dimension and number of transformer modules 
normally give better performance. Therefore, the proposed transformer-based models 
are capable of handling tabular data. Another benefit of using neural network-based 
models is that they can be modified to receive other complex data, such as images, to 
further enhance the model’s capacity. 
 
Table 10. Results of TET models (best results are underlined) 

Model MSE MAE RMSE R2 

TET-P16T1M32-1 0.148 0.215 0.380 0.956 

TET-P16T1M32-2 0.147 0.220 0.379 0.957 

TET-P16T2M32-1 0.124 0.209 0.345 0.963 

TET-P16T3M32-1 0.116 0.203 0.337 0.966 

TET-P32T1M32-1 0.097 0.186 0.305 0.971 

TET-P32T2M32-1 0.088 0.174 0.286 0.974 

TET-P32T3M32-1 0.103 0.189 0.313 0.969 

 
     3.5 Performance of CNN-based models 
 
     The evaluation metrics of CNN-based models are reported in Table 11. The 
performance of most CNN-based models is comparable with the ensemble methods, 
such as RF and LightGBM, and ensemble ANN models, but slightly lower than 
transformer-based models. The best CNN-based model is 2D-CNN2-M16 which is 
composed of 64 3x3 kernels followed by 32 3x3 kernels and a fully connected layer 
with 16 units in hidden layer. The MSE and R2 score are 0.288 and 0.915, respectively. 
The results also reveal that increasing the number of kernels can help to enhance 
predictive performance. In short, the use of CNN-based algorithms can help to improve 
the performance of vanilla MLP models. More studies can be conducted to explore 
tabular-to-image transformation methods and CNN architecture.  
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Table 11. Results of CNN-based models (best results are underlined) 

Model MSE MAE RMSE R2 

2D-CNN1-M16 0.327 0.322 0.569 0.904 

2D-CNN2-M16 0.288 0.289 0.535 0.915 

2D-CNN1-M32 0.351 0.316 0.589 0.897 

2D-CNN2-M32 0.301 0.297 0.543 0.912 

 
4. CONCLUSIONS 
 
This paper investigated the capabilities of using data-driven methods based on ML 
algorithms, including basic algorithms, ensemble methods, and neural network-based 
models to predict seismic responses of RC buildings. Modifications on neural network 
architectures using ensemble techniques, embedding and transformers, and CNN 
algorithms were also explored. The key findings are summarized as follows: 

• SVR model could achieve satisfactory performance for regression problems based 
on tabular data compared with the other basic algorithms, such as DT and KNN. 

• Among the boosting methods considered in this study, AdaBoost achieved the 
highest performance levels. XGBoost performed slightly lower than AdaBoost, 
followed by GBDT and LightGBM. The performance of boosting models could be 
slightly enhanced via the stacking method. 

• The performance of vanilla MLP models was generally lower than ensemble 
methods in processing tabular data. An increase in the number of units per layer and 
the number of hidden layers could improve their performance. 

• Ensemble ANN, which combined ensemble methods and ANNs together, could 
improve the predictive performance of vanilla MLP models, but the performance was 
generally lower than classical ensemble models (e.g. XGBoost, GBDT).  

• Two ensemble methods, namely stacking and boosting methods, were adopted. This 
study showed that StackANN was an effective way to enhance the performance of 
ANN models. StackANN models could potentially achieve similar performance to 
ensemble models. On the other hand, GBANN models showed satisfactory results, 
but the metrics were slightly lower than StackANN. Besides, GBANN models took 
longer time for training and testing. 

• This study proposed a Tabular Embedding Transformer (TET) model based on 
feature embedding techniques, feature masking and transformer architecture for 
handling tabular data. The results revealed that such techniques could significantly 
enhance the model’s accuracy so that the TET models could outperform ensemble 
methods in some problems. 

• Tabular-to-image transformation with CNN architecture were effective algorithms to 
enhance the predictive performance of ANN models. The performance of the CNN-
based models under consideration was comparable with most of the ensemble 
models. 

• The proposed models could be used to rapidly estimate the MIDR of buildings under 
different levels of earthquake. The results were valuable to understand the seismic 
performance and possible damage levels of buildings under earthquakes. 
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Further studies will involve investigating cutting-edge techniques, such as tabular-to-
image transformation algorithms, tabular-to-graph transformation and graph neural 
network, auto-encoder and applications of transfer learning to enhance the predictive 
performance of the ANN models to process tabular data. 
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